[ Back to the main page ]
Reading List
Tutorial/review papers
-
P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R.G.L. D'Oliveira, S. El Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P.B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S.U. Stich, Z. Sun, A.T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q.Yang, F.X. Yu, H. Yu, S. Zhao:
Advances and Open Problems in Federated Learning.
(arxiv preprint, 2019)
-
T. Li, A.K. Sahu, A. Talwalkar, V. Smith:
Federated Learning: Challenges, Methods, and Future Directions.
(arxiv preprint, 2019)
-
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, B. He:
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. (arxiv preprint, 2019)
Improving Communication-Efficiency in Federated Learning
-
H.B. McMahan, E. Moore, D. Ramage, S. Hampson, B. Agüera y Arcas:
Communication-Efficient Learning of Deep Networks from Decentralized Data.
(AISTATS, 2017)
-
S. Caldas, J. Konečny, H.B. McMahan, A. Talwalkar:
Expanding the Reach of Federated Learning by Reducing Client Resource Requirements.
(arxiv preprint, 2018)
-
F. Sattler, S. Wiedemann, K.-R. Müller, W. Samek:
Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data.
(IEEE TNNLS, 2019)
Federated Learning in Adversarial Settings
-
Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, Vitaly Shmatikov:
How To Backdoor Federated Learning.
(arxiv preprint, 2018)
-
B Hitaj, G Ateniese, F Perez-Cruz:
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning.
(ACM SIGSAC, 2017)
-
Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, Seraphin Calo:
Analyzing Federated Learning through an Adversarial Lens.
(ICML, 2019)
-
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth:
Practical Secure Aggregation for Federated Learning on User-Held Data.
(ACM SIGSAC, 2017)
-
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., Zhang, L.:
Deep Learning with Differential Privacy.
ACM SIGSAC, 2016
Statistical Challenges
-
Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vikas Chandra:
Federated Learning with Non-IID Data.
(arxiv preprint, 2018)
-
Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, Zhihua Zhang
On the Convergence of FedAvg on Non-IID Data.
(ICLR, 2020)
-
Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, Virginia Smith
Federated Optimization in Heterogeneous Networks.
(MLSys 2020)
Beyond learning a single Model: Federated Meta and Multi-Task Learning
-
F. Sattler, K.-R. Müller, W. Samek:
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
(arxiv preprint, 2019)
-
Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, Ameet S. Talwalkar:
Federated Multi-Task Learning.
(Neurips, 2017)
-
Yihan Jiang, Jakub Konečný, Keith Rush, Sreeram Kannan:
Improving Federated Learning Personalization via Model Agnostic Meta Learning.
(arxiv preprint, 2019)
Frameworks
- TensorFlow:
TensorFlow Federated
(open-source framework for machine learning and other computations on decentralized data)
- PyTorch:
PySift
(Python library for secure and private Deep Learning)